

This research is funded through the NASA Advanced Information Systems Technology Program (NASA award AIST-02-0135)

IDACT: Automating Data Discovery and Compilation

Kara L. Nance and Brian Hay
Department of Mathematical Sciences

University of Alaska Fairbanks
Box 756660

Fairbanks, AK 99775-6660

 Abstract - IDACT serves as an automated middle-layer which
acts as an interface between the user and the heterogeneous data
sources. Data sources are registered with the middle-layer, and
a user can then request data from any (or all) of the available
sources without having knowledge of the specific
implementation details and formats. The data returned will be
automatically converted from the native format to the formats
required by the scientific models or analysis tools. Finally, the
intermediate data and the products of the models may be
archived in a data warehouse for re-use in the future. This
approach allows the researcher to focus on the analysis of
results, while ensuring that both the hardware and the
researcher’s time are used as efficiently as possible.

I. INTRODUCTION

 As scientific models and analysis tools become
increasingly complex they allow researchers to manipulate
larger, richer, and more finely-grained datasets, often
gathered from diverse sources. These complex models
provide scientists with the opportunity to investigate
phenomena in much greater depth, but this additional power
is not without cost. Often this cost is expressed in the time
required on the part of the researcher to find, gather, and
transform the data necessary to satisfy the appetites of their
data-hungry computational tools, and this is time that could
clearly be better spent analyzing results. In many cases, even
determining if a data source holds any relevant data requires a
time-consuming manual search, followed by a conversion
process in order to view the data. Frequently as the
researcher spends time searching for and reformatting the
data, the expensive hardware remains underutilized. In
addition, the heterogeneous, distributive, and voluminous
nature of many government and corporate data sources
imposes severe constraints on meeting the diverse
requirements of users who analyze the data [4]. Fortunately
it is possible to automate much of this process, allowing for
increased productivity on the part of the scientists, and
increased throughput and utilization for the models and
analysis tools. This research effort builds on proven
technology in automating the compilation of heterogeneous
scientific datasets [4, 5, 6, 7, 8, 9, 10, 11] to create an
Intelligent Dataset Identification, Assimilation, Collection
and Transformation Systems (IDACT).

II. SYSTEM PROCESS OVERVIEW

 A high level description of the IDACT solution involves
eight steps, which are depicted in figure 1. To start the
process (1) the researcher submits a standard query to the
IDACT layer. This query can be submitted using a variety of
formats designed to meet the needs of the particular user,
ranging from a basic pick-list type interface to a highly
detailed SQL type statement. At this point (2), the IDACT
system will use the information in the Data Source Registry
to automatically generate a series of queries that will allow
the data sources to be identified and searched. In some cases,
these queries will be SQL statements for access to a relational
database system, although in other cases the “queries” may be
as simple as checking a directory structure for files. In step
(3), the queries generated by IDACT will executed in order to
retrieve (4) any relevant data. It should be noted that the
system does not only query the external data sources, but also
the internal data warehouse that will be used to store
commonly used transformed data, model outputs, and
analysis tool results.
 The data returned to IDACT (4) will meet one of three
conditions, which will be handled by the Transformation
Manager. The easiest case is the one in which the data is
already in the format required by the user. Slightly more
complex to deal with is data that is not in the required format,
but for which a previously defined conversion mechanism is
available. Several of these commonly used conversion
mechanisms already exist, such as from netCDF to HDF5,
and others will be developed as part of this project. The third
possibility involves the case in which the data requires a
conversion, but no defined conversion exists. This is the
most complex case, but it is simplified considerably from the
perspective of the user through the use of automated
intelligent agents to develop a proposed conversion process,
which is then presented to the user for either approval or
modification. Once a conversion process is identified, the
data can clearly be converted to the required format.
However, a major strength of the IDACT system lies in its
ability to “save” this conversion process for automatic use
with similar datasets in the future.
 When all of the necessary data components are available in
a suitable format (5), the Scheduler determines when each
model and analysis tool should be run to achieve maximum
throughput while ensuring that each meets its scheduled
completion deadline (6). This step may be omitted in the
event that the researcher wants to use IDACT to simply
gather and transform data, which will be used as input to an
offline model or analysis tool. Although a factor in the

scheduler will be the completion deadline for each model run,
it will not be known in advance exactly how long a model
will take to execute. This problem can be solved using a
learning algorithm. By comparing the characteristics of
previous models runs with their execution time, it will be
possible to estimate the time required to complete the current

models, and this estimate will be used in the scheduling
decisions.
 The output from the model or tools is then returned to the
researcher (7), allowing them to analyze the results. Often
these results will be archived (8) in the IDACT data
warehouse for use in future research efforts.

IDACT

Data
Source

1

Data
Warehouse

1

Query
Manager

Transformation
Manager Scheduler

5

Models and
Analysis Tools

6

7
Researcher

8

Figure 1 - High Level System Design

4

Key
1 - Researcher submits standard query.
2 - Query Manager builds data-source specific queries.
3 - Query Manager queries each data source.
4 - Data sources return relevant data, if available.
5 - Transformation Manager transforms data as required.
6 - Scheduler executes model.
7 - Model results made available to researcher.
8 - Intermediate results archived for re-use.

Data
Source

2

Data
Source
n

3 4

Data Source
Registry

2

III. DATA DISCOVERY

 The Data Source Registry (DSR) is the component of the
system that facilitates the data discovery process targeting
domain-specific applications [1]. The DSR allows the
identification of domain-specific datasets as candidates for
combination, as well as the identification of relationships
between datasets. Version 1 of the DSR uses a data pull
method with the essential metadata being stored in the data
source registry. It allows creation of a set of common fields,
to which fields from individual datasets can be mapped using
the various classes of transformations identified to support
the DTM. A community of users can add identified datasets
to the DSR to provide a centralized data portal. Version 2 of
the system will provide mechanisms for automating the data
registry candidate identification step to further strengthen the
domain datasets available for data mapping.

IV. DATA COMPILATION

 The Data Transformation Manager (DTM) component is
the center of the data compilation process [3]. The DTM
accepts the results of a data query, and then determines and
applies the appropriate conversion to apply in order to obtain
the required output format. Consider the example in which
the DTM receives an XML document as a result of a query.
In such a case, the DTM may face one of the following
possible situations, which are presented in order of increasing
complexity:

A. The easiest situation is the one in which the input
and output format are the same, and as a result the
DTM simply passes the input data directly to the
output location.

B. A slightly more complex situation is the one in
which the input and output formats differ, but where
the DTM is aware of a transformation process that
can be applied to convert between the two formats.
The DTM searches its internal database to determine
if a suitable transformation exists, and applies the
transformation if one is found. For example, the
input document may be valid with respect to one
XML Schema (.xsd file), whereas the required
format is an XML document that is valid with
respect to a different XML Schema. If an XSLT
document which performs the required
transformation is available to the DTM, then it can
be applied to the input document via an XSLT
processor, such as Apache Xalan, resulting in the
required output format. Transformations are not
limited to XSLT documents, however, and the DTM
currently allows other transformation methods, such
as executables, scripts, and database updates, to be
used.

C. If a single transformation cannot be found by the

DTM, it next attempts to build a transformation
sequence which results in the required output
format. For example, if the DTM is attempting to
convert format A into format C, it may not be aware
of a method that directly performs the
transformation. However, if the DTM is able to
transform format A into format B using a known
method, and is also able to transform format B into
format C using another known method, and the
required transformation can be achieved by applying
these two transformations in sequence. In this
manner, the DTM can perform transformations for
which a single transformation process has not been
defined.

D. If a suitable transformation sequence is not found,

the DTM will attempt to create a new transformation
process. The DTM version 1 transformation
creation process consists of the automated
generation of XSLT documents to perform the
transformation, although additional mechanisms are
under development for DTM version 2. For
example, if we have an XML input document that is
valid with respect to one XML Schema, and a
required XML output document that is valid with
respect to a second XML Schema, the two formats
can be represented as trees. In order to build the
XSLT document that performs the transformation,
the DTM first attempts to determine the
relationships between the input and output XML
elements, by considering the XML element names,
or the XML element content formats. For example,
if the input format has an element named lat, and the
output format has an element named latitude, then

the DTM may conclude that a relationship exists
between the contents of these elements. However,
the lat element may contain data as decimal degrees
(e.g. 10.46), and the latitude element may contain
data as degrees minutes and seconds (e.g. 10° 27’
36” N), so a conversion is required for the data
contained in each lat elements. By searching a
library of XSLT conversions (such as decimal
degrees to degree, minutes, and seconds), and a
database of element name relationships (such as lat
to latitude), the DTM can build an entire XSLT
document from library components. This XSLT
document can then be applied to the immediate
problem, and will also be saved and made available
for future similar transformations. However, it is
possible that the DTM will encounter an element for
which it does not have a relationship. In such cases,
the user is prompted to provide an indication of the
correct relationship, which can then be used to
create the current XSLT document. This new
relationship will also be added to the DTM database,
and will then be used if similar elements are
encountered in the future. In this way, the ability of
the DTM to automatically build XSLT documents is
improved, and other users can benefit from the work
of all previous users.

 While XSLT documents are an effective method by which
transformation rules can be described, they are not
particularly fast when used to perform the transformations,
especially for large datasets. To improve their efficiency, it is
possible to instruct XSLT processors to automatically
generate Java Byte Code (.class files) to perform the
transformation. These translets typically perform the same
transformation faster than the source XSLT documents, and
as such can be used to increase throughput for the DTM. The
current version of the DTM is implemented in Java, although
it is possible that future versions will be ported to a higher
performance language if testing warrants.
 In order to interact with various data formats (such as XML
documents, database recordsets, etc), and transformation
methods (e.g. XSLT documents, executables, and scripts), the
core DTM functionality is highly modular. As such, when
new transformation methods are created in the future, the
DTM functionality can easily be extended to include these
new methods. For example, if a new XSLT document or
executable is made available to the DTM it can be easily
incorporated using the existing system. However, even if a
fundamentally new processing method is developed, as is
likely to occur as technology continues to advance, this new
method can be used by IDACT by writing a new module, in a
manner analogous to the approach used by device drivers to
allow the Operating System and hardware devices to interact.
 Programmatic access to the DTM is currently available
though either a traditional Java based API, or through a Web
Service based API that allows network enabled clients to

invoke the DTM functionality across the network. This
approach ensures that local clients can make fast local
connections via the Java API, while still allowing remote
clients to access the functionality via the web service
interface.

V. FUTURE CONSIDERATIONS

 The development of the DTM will continue to incorporate
a large number of predefined transformations, such as
executables, scripts, and XSLT documents to perform
common transformations for the Earth Science domain, and
the wider NASA and scientific communities. Testing of the
DTM is underway, with the first test environment being the
University of Alaska SRP5 Sounding Rocket telemetry
stream. Further test environments have been identified, and
will be incorporated as the DTM development continues.
The most significant task remaining for the DTM is the
development and implementation of methodologies for the
automated creation of new transformations. This will build
on the results of the testing of the current implementation of
the automated XSLT generation module, which itself will
continue to be refined. The IDACT project will release the
source code for all implemented tools under the GPL via
sourceforge.net. An initial DTM toolkit will be released in
July 2004, with future releases for the DTM and other
IDACT components to follow as project milestones are
reached.

ACKNOWLEDGMENTS

 This research is funded through the NASA Advanced
Information Systems Technology Program (NASA award
AIST-02-0135) and the University of Alaska Fairbanks.

REFERENCES

[1] C. Crewdson and K. Nance, IDACT Data Source

Registry Technical Specification, May 2004.
[2] S. Das,, K. Shuster and C. Wu, “ACQUIRE: agent-

based complex query and information retrieval engine.”
Proceedings of the first international joint conference on
autonomous agents and multiagent systems. Bologna,
Italy, 2002.

[3] B. Hay and K. Nance, IDACT Transformation Manager
Technical Specification. May 2004.

[4] B. Hay and K. Nance, "Simon: An Intelligent Agent For
Heterogeneous Data Mapping.” Proceedings of the
International Conference on Intelligent Systems and
Control. Honolulu, Hawaii. August 13-18, 2000.

[5] K. Nance, “Data System Planning For Formerly Used
Defense Sites (FUDS).” Proceedings of the American
Society of Business and Behavioral Sciences:
Government And Business Problems. February 20-26,
1997.

[6] K. Nance, “Decision Support and Data Mining.”
Proceedings of the International Simulation
Multiconference. April 6 – 10, 1997.

[7] K. Nance, “Synthesis of Heterogeneous Data Sets.”
Proceedings of the 9th Annual Software Technology
Conference. May 6 – 10, 1997

[8] K. Nance, “Applying AI Techniques In Developing
Plans For Formerly Used Defense Sites (FUDS) In
Alaska.” Mathematical Modeling and Scientific
Computing, vol. 8, 1997.

[9] K. Nance and J. Wiens, “SynCon: Simulating
Remediation Planning.” Mathematical Modeling and
Scientific Computing, 1998.

[10] K. Nance, J. Wiens and S. George, “The SynCon
Project: Arctic Regional Environmental Contamination
Assessment.” Proceedings of the38th Annual Western
Regional Science Conference. February, 1999.

[11] K. Nance, J. Wiens and S. George, “The SynCon
Project: Phase II Assessing Human Health In the
Arctic.” Proceedings of the International ICSC Congress
on Computational Intelligence: Methods And
Applications. June, 1999.

